亲,欢迎光临33言情!
错缺断章、加书:站内短信
后台有人,会尽快回复!
33言情 > 古言 > 离语 > 第330章 累鼠
  • 主题模式:

  • 字体大小:

    -

    18

    +
  • 恢复默认

范形、用正交变换和配方法化二次型为标准形、二次型及其矩阵的正定性.

考试要求

1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解

二次型的标准形、规范形的概念以及惯性定理.

2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.

3.理解正定二次型、正定矩阵的概念,并掌握其判别法.

概率论与数理统计

一、随机事件和概率

随机事件与样本空间、事件的关系与运算、完备事件组、概率的概念、概率的基本性质、古

典型概率、几何型概率、条件概率、概率的基本公式、事件的独立性、独立重复试验.

考试要求

1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.

2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌

握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.

3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌

握计算有关事件概率的方法.

二、随机变量及其分布

随机变量、随机变量分布函数的概念及其性质、离散型随机变量的概率分布、连续型随机变

量的概率密度、常见随机变量的分布、随机变量函数的分布.

考试要求

1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概

率.

2.理解离散型随机变量及其概率分布的概念,掌握 0-1 分布、二项分布、几何分布、超几何

分布、泊松(Poisson)分布及其应用.

3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.

4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,

参数为λ(λ>0)的指数分布的概率密度.

5.会求随机变量函数的分布.

三、多维随机变量及其分布。

多维随机变量及其分布、二维离散型随机变量的概率分布、边缘分布和条件分布、二维连续

型随机变量的概率密度、边缘概率密度和条件密度、随机变量的独立性和不相关性、常用二

维随机变量的分布、两个及两个以上随机变量简单函数的分布.

考试要求

1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机

变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和

条件密度,会求与二维随机变量相关事件的概率.

2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.

3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.

4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.

四、随机变量的数字特征

随机变量的数学期望(均值)、方差、标准差及其性质、随机变量函数的数学期望、矩、协方

差、相关系数及其性质.

考试要求

1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运

用数字特征的基本性质,并掌握常用分布的数字特征.

2.会求随机变量函数的数学期望.

五、大数定律和中心极限定理

切比雪夫(Chebyshev)不等式、切比雪夫大数定律、伯努利(Bernoulli)大数定律、辛钦

(Khinchine)大数定律、棣莫弗-拉普拉斯(De Moivre-Laplace)定理、列维-林德伯格

(Levy-Lindberg)定理.

考试要求

1.了解切比雪夫不等式.

2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大

数定律).

3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立

同分布随机变量序列的中心极限定理).

六、数理统计的基本概念

总体、个体、简单随机样本、统计量、样本均值、样本方差和样本矩、卡方分布、t 分布、

F 分布、分位数、正态总体的常用抽样分布.

考试要求

1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.

2.了解卡方分布、t 分布和 F 分布的概念及性质,了解上侧α分位数的概念并会查表计算.

小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!